Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423193

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Machado-Joseph Disease , Humans , Machado-Joseph Disease/metabolism , Ataxin-3/genetics , Ataxin-3/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Cerebellum/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Article En | MEDLINE | ID: mdl-37962377

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Cerebellar Ataxia , Machado-Joseph Disease , Humans , Machado-Joseph Disease/genetics , Cross-Sectional Studies , Ataxia , Biomarkers
4.
medRxiv ; 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37163081

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.

5.
Brain ; 146(10): 4132-4143, 2023 10 03.
Article En | MEDLINE | ID: mdl-37071051

Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.


Machado-Joseph Disease , Spinocerebellar Ataxias , Humans , Machado-Joseph Disease/genetics , Transcriptome , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/complications , Ataxin-3/genetics , Biomarkers , Adaptor Proteins, Signal Transducing/genetics , Microtubule-Associated Proteins/metabolism , Microfilament Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
6.
Mol Neurobiol ; 60(6): 3553-3567, 2023 Jun.
Article En | MEDLINE | ID: mdl-36894829

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.


Ataxin-2 , Spinocerebellar Ataxias , Animals , Humans , Ataxin-2/genetics , Ataxin-2/metabolism , Fluorescence Resonance Energy Transfer , Spinocerebellar Ataxias/genetics , Immunoassay , Disease Progression , Ataxin-3/metabolism , Ataxin-1/metabolism
7.
J Neurol ; 270(2): 944-952, 2023 Feb.
Article En | MEDLINE | ID: mdl-36324033

BACKGROUND: Non-motor symptoms (NMS) are a substantial burden for patients with SCA3. There are limited data on their frequency, and their relation with disease severity and activities of daily living is not clear. In addition, lifestyle may either influence or be affected by the occurrence of NMS. OBJECTIVE: To characterize NMS in SCA3 and investigate possible associations with disease severity and lifestyle factors. METHODS: In a prospective cohort study, we performed a cross-sectional analysis of NMS in 227 SCA3 patients, 42 pre-ataxic mutation carriers, and 112 controls and tested for associations with SARA score, activities of daily living, and the lifestyle factors alcohol consumption, smoking and physical activity. RESULTS: Sleep disturbance, restless legs syndrome, mild cognitive impairment, depression, bladder dysfunction and pallhypesthesia were frequent among SCA3 patients, while mainly absent in pre-ataxic mutation carriers. Except for restless legs syndrome, NMS correlated significantly with disease severity and activities of daily living. Alcohol abstinence was associated with bladder dysfunction. Patients with higher physical activity showed less cognitive impairment and fewer depressive symptoms, but these differences were not significant. CONCLUSION: This study revealed a clear association between disease severity and NMS, likely driven by the progression of the widespread neurodegenerative process. Associations between lifestyle and NMS can probably be attributed to the influence of NMS on lifestyle.


Restless Legs Syndrome , Humans , Restless Legs Syndrome/epidemiology , Prospective Studies , Cross-Sectional Studies , Activities of Daily Living , Patient Acuity , Life Style
8.
Mov Disord ; 37(9): 1850-1860, 2022 09.
Article En | MEDLINE | ID: mdl-35808813

BACKGROUND: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. OBJECTIVES: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. METHODS: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. RESULTS: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. CONCLUSION: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Machado-Joseph Disease , Ataxia , Cohort Studies , Humans , Machado-Joseph Disease/complications , Male , Prospective Studies , Severity of Illness Index
9.
Cell Mol Life Sci ; 79(8): 401, 2022 Jul 06.
Article En | MEDLINE | ID: mdl-35794401

Machado-Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.


Ataxin-3 , Endopeptidase Clp , Machado-Joseph Disease , Mitochondria , beta Karyopherins , Animals , Ataxin-3/genetics , Ataxin-3/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Mice , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism
10.
Int J Mol Sci ; 23(11)2022 May 25.
Article En | MEDLINE | ID: mdl-35682609

Dysfunctional mitochondria are linked to several neurodegenerative diseases. Metabolic defects, a symptom which can result from dysfunctional mitochondria, are also present in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, the most frequent, dominantly inherited neurodegenerative ataxia worldwide. Mitochondrial dysfunction has been reported for several neurodegenerative disorders and ataxin-3 is known to deubiquitinylate parkin, a key protein required for canonical mitophagy. In this study, we analyzed mitochondrial function and mitophagy in a patient-derived SCA3 cell model. Human fibroblast lines isolated from SCA3 patients were immortalized and characterized. SCA3 patient fibroblasts revealed circular, ring-shaped mitochondria and featured reduced OXPHOS complexes, ATP production and cell viability. We show that wildtype ataxin-3 deubiquitinates VDAC1 (voltage-dependent anion channel 1), a member of the mitochondrial permeability transition pore and a parkin substrate. In SCA3 patients, VDAC1 deubiquitination and parkin recruitment to the depolarized mitochondria is inhibited. Increased p62-linked mitophagy, autophagosome formation and autophagy is observed under disease conditions, which is in line with mitochondrial fission. SCA3 fibroblast lines demonstrated a mitochondrial phenotype and dysregulation of parkin-VDAC1-mediated mitophagy, thereby promoting mitochondrial quality control via alternative pathways.


Machado-Joseph Disease , Ataxin-3/genetics , Ataxin-3/metabolism , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
11.
Front Immunol ; 13: 870966, 2022.
Article En | MEDLINE | ID: mdl-35558088

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease, is a progressive neurodegenerative disorder characterized by loss of neuronal matter due to the expansion of the CAG repeat in the ATXN3/MJD1 gene and subsequent ataxin-3 protein. Although the underlying pathogenic protein expansion has been known for more than 20 years, the complexity of its effects is still under exploration. The ataxin-3 protein in its expanded form is known to aggregate and disrupt cellular processes in neuronal tissue but the role of the protein on populations of immune cells is unknown. Recently, mast cells have emerged as potential key players in neuroinflammation and neurodegeneration. Here, we examined the mast cell-related effects of ataxin-3 expansion in the brain tissues of 304Q ataxin-3 knock-in mice and SCA3 patients. We also established cultures of mast cells from the 304Q knock-in mice and examined the effects of 304Q ataxin-3 knock-in on the immune responses of these cells and on markers involved in mast cell growth, development and function. Specifically, our results point to a role for expanded ataxin-3 in suppression of mast cell marker CD117/c-Kit, pro-inflammatory cytokine TNF-α and NF-κB inhibitor IκBα along with an increased expression of the granulocyte-attracting chemokine CXCL1. These results are the beginning of a more holistic understanding of ataxin-3 and could point to the development of novel therapeutic targets which act on inflammation to mitigate symptoms of SCA3.


Machado-Joseph Disease , Neurodegenerative Diseases , Animals , Ataxin-3/genetics , Ataxin-3/metabolism , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Mast Cells/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
13.
Eur J Neurol ; 29(8): 2439-2452, 2022 Aug.
Article En | MEDLINE | ID: mdl-35478426

BACKGROUND AND PURPOSE: Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures. METHODS: To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels. RESULTS: Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001). CONCLUSION: Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.


Machado-Joseph Disease , Neurofilament Proteins , tau Proteins , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cerebellum/chemistry , Heterozygote , Humans , Machado-Joseph Disease/blood , Machado-Joseph Disease/cerebrospinal fluid , Machado-Joseph Disease/genetics , Mice , Mice, Transgenic , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , tau Proteins/blood , tau Proteins/cerebrospinal fluid , tau Proteins/genetics
14.
Mov Disord ; 37(2): 405-410, 2022 02.
Article En | MEDLINE | ID: mdl-34713931

BACKGROUND: Lifestyle could influence the course of hereditary ataxias, but representative data are missing. OBJECTIVE: The objective of this study was to characterize lifestyle in spinocerebellar ataxia type 3 (SCA3) and investigate possible associations with disease parameters. METHODS: In a prospective cohort study, data on smoking, alcohol consumption, physical activity, physiotherapy, and body mass index (BMI) were collected from 243 patients with SCA3 and 119 controls and tested for associations with age of onset, disease severity, and progression. RESULTS: Compared with controls, patients with SCA3 were less active and consumed less alcohol. Less physical activity and alcohol abstinence were associated with more severe disease, but not with progression rates or age of onset. Smoking, BMI, or physiotherapy did not correlate with disease parameters. CONCLUSION: Differences in lifestyle factors of patients with SCA3 and controls as well as associations of lifestyle factors with disease severity are likely driven by the influence of symptoms on behavior. No association between lifestyle and disease progression was detected. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Machado-Joseph Disease , Spinocerebellar Ataxias , Humans , Life Style , Prospective Studies , Severity of Illness Index , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/epidemiology
15.
Mol Neurobiol ; 59(1): 495-522, 2022 Jan.
Article En | MEDLINE | ID: mdl-34716557

Spinocerebellar ataxia type 3 is the most common autosomal dominant inherited ataxia worldwide, caused by a CAG repeat expansion in the Ataxin-3 gene resulting in a polyglutamine (polyQ)-expansion in the corresponding protein. The disease is characterized by neuropathological, phenotypical, and specific transcriptional changes in affected brain regions. So far, there is no mouse model available representing all the different aspects of the disease, yet highly needed for a better understanding of the disease pathomechanisms. Here, we characterized a novel Ataxin-3 knock-in mouse model, expressing a heterozygous or homozygous expansion of 304 CAACAGs in the murine Ataxin-3 locus using biochemical, behavioral, and transcriptomic approaches. We compared neuropathological, and behavioral features of the new knock-in model with the in SCA3 research mostly used YAC84Q mouse model. Further, we compared transcriptional changes found in cerebellar samples of the SCA3 knock-in mice and post-mortem human SCA3 patients. The novel knock-in mouse is characterized by the expression of a polyQ-expansion in the murine Ataxin-3 protein, leading to aggregate formation, especially in brain regions known to be vulnerable in SCA3 patients, and impairment of Purkinje cells. Along these neuropathological changes, the mice showed a reduction in body weight accompanied by gait and balance instability. Transcriptomic analysis of cerebellar tissue revealed age-dependent differential expression, enriched for genes attributed to myelinating oligodendrocytes. Comparing these changes with those found in cerebellar tissue of SCA3 patients, we discovered an overlap of differentially expressed genes pointing towards similar gene expression perturbances in several genes linked to myelin sheaths and myelinating oligodendrocytes.


Ataxin-3/genetics , Cerebellum/metabolism , Disease Models, Animal , Machado-Joseph Disease/genetics , Oligodendroglia/metabolism , Phenotype , Animals , Ataxin-3/metabolism , Machado-Joseph Disease/metabolism , Mice , Mice, Transgenic , Purkinje Cells/metabolism
16.
Mol Ther Nucleic Acids ; 27: 99-108, 2022 Mar 08.
Article En | MEDLINE | ID: mdl-34938609

Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.

17.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34785590

Aberrant O-GlcNAcylation, a protein posttranslational modification defined by the O-linked attachment of the monosaccharide N-acetylglucosamine (O-GlcNAc), has been implicated in neurodegenerative diseases. However, although many neuronal proteins are substrates for O-GlcNAcylation, this process has not been extensively investigated in polyglutamine disorders. We aimed to evaluate the enzyme O-GlcNAc transferase (OGT), which attaches O-GlcNAc to target proteins, in Machado-Joseph disease (MJD). MJD is a neurodegenerative condition characterized by ataxia and caused by the expansion of a polyglutamine stretch within the deubiquitinase ataxin-3, which then present increased propensity to aggregate. By analyzing MJD cell and animal models, we provide evidence that OGT is dysregulated in MJD, therefore compromising the O-GlcNAc cycle. Moreover, we demonstrate that wild-type ataxin-3 modulates OGT protein levels in a proteasome-dependent manner, and we present OGT as a substrate for ataxin-3. Targeting OGT levels and activity reduced ataxin-3 aggregates, improved protein clearance and cell viability, and alleviated motor impairment reminiscent of ataxia of MJD patients in zebrafish model of the disease. Taken together, our results point to a direct interaction between OGT and ataxin-3 in health and disease and propose the O-GlcNAc cycle as a promising target for the development of therapeutics in the yet incurable MJD.


Ataxin-3/metabolism , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , N-Acetylglucosaminyltransferases/metabolism , Animals , Ataxin-3/genetics , Disease Models, Animal , HEK293 Cells , Humans , Peptides , Proteasome Endopeptidase Complex , Zebrafish/metabolism
18.
Article De | MEDLINE | ID: mdl-34524474

The worldwide development of twin cohorts began after World War II. These cohorts now include around 1.5 million twins, and more than 2748 twin studies have been published between 1950 and 2012. Each year, the number of twin publications increases by another 500 to 1000. The underrepresentation of German twin studies cannot be solely explained by the abuse of medical research under National Socialism. Developing and expanding large twin cohorts is a challenge in terms of both ethics and data protection. However, twin cohorts enable long-term and real-time research on many medical issues and contribute to answer the question of predisposition or environment as possible disease triggers - even after the sequencing of the human genome.There are currently two German twin cohorts: the biomedical cohort HealthTwiSt, with around 1500 pairs of twins, and TwinLife, a sociological-psychological cohort with around 4000 pairs of twins. There are also disease-specific cohorts. The TwinHealth Consortium in the Faculty of Medicine at the University of Tübingen was established in 2016 with the aim of enabling open-ended and sustainable twin research in Tübingen to answer various scientific questions.With the help of systematic literature research and medical history, this article gives an overview of the worldwide development of twin studies and databases over the last 100 years. The example of the Tübingen TwinHealth Initiative illuminates the structure of a twin cohort and its legal, ethical, and data protection aspects.


Biomedical Research , Diseases in Twins , Cohort Studies , Germany/epidemiology , Humans
19.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Article En | MEDLINE | ID: mdl-34397117

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Machado-Joseph Disease , Neurodegenerative Diseases , Ataxin-3/genetics , Cross-Sectional Studies , Humans , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Peptides
20.
Mol Brain ; 14(1): 57, 2021 03 19.
Article En | MEDLINE | ID: mdl-33741019

Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disorder resulting from an aberrant expansion of a polyglutamine stretch in the ataxin-3 protein and subsequent neuronal death. The underlying intracellular signaling pathways are currently unknown. We applied the Reverse-phase Protein MicroArray (RPMA) technology to assess the levels of 50 signaling proteins (in phosphorylated and total forms) using three in vitro and in vivo models expressing expanded ataxin-3: (i) human embryonic kidney (HEK293T) cells stably transfected with human ataxin-3 constructs, (ii) mouse embryonic fibroblasts (MEF) from SCA3 transgenic mice, and (iii) whole brains from SCA3 transgenic mice. All three models demonstrated a high degree of similarity sharing a subset of phosphorylated proteins involved in the PI3K/AKT/GSK3/mTOR pathway. Expanded ataxin-3 strongly interfered (by stimulation or suppression) with normal ataxin-3 signaling consistent with the pathogenic role of the polyglutamine expansion. In comparison with normal ataxin-3, expanded ataxin-3 caused a pro-survival stimulation of the ERK pathway along with reduced pro-apoptotic and transcriptional responses.


Ataxin-3/physiology , Machado-Joseph Disease/physiopathology , Nerve Tissue Proteins/physiology , Peptides/metabolism , Phosphoproteins/physiology , Signal Transduction/physiology , Animals , Apoptosis , Ataxin-3/genetics , Cell Line , Fibroblasts , Glycogen Synthase Kinase 3/physiology , HEK293 Cells , Humans , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinases/physiology , Protein Array Analysis , Proto-Oncogene Proteins c-akt/physiology , TOR Serine-Threonine Kinases/physiology
...